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Suppression of vertical diffusion
in strongly stratified turbulence
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Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

(Received 12 January 1998 and in revised form 3 September 1999)

A spectral approximation for diffusion of passive scalar in stably and strongly strati-
fied turbulence is presented. The approximation is based on a linearized approxima-
tion for the Eulerian two-time correlation and Corrsin’s conjecture for the Lagrangian
two-time correlation. For strongly stratified turbulence, the vertical component of the
turbulent velocity field is well approximated by a collection of Fourier modes (waves)
each of which oscillates with a frequency depending on the direction of the wavevec-
tor. The proposed approximation suggests that the phase mixing among the Fourier
modes having different frequencies causes the decay of the Lagrangian two-time ver-
tical velocity autocorrelation, and the highly oscillatory nature of these modes results
in the suppression of single-particle dispersion in the vertical direction. The approxi-
mation is free from any ad hoc adjusting parameter and shows that the suppression
depends on the spectra of the velocity and fluctuating density fields. It is in good
agreement with direct numerical simulations for strongly stratified turbulence.

1. Introduction
Stratification in turbulence strongly affects transport processes in various geophys-

ical and engineering flows. It is known that particle displacement in the vertical
direction may be strongly suppressed in stably stratified turbulence, (see, e.g. Lilly,
Walko & Adelfang 1974; Weinstock 1978; Kimura & Herring 1996; Vincent, Michaud
& Meneguzzi 1996).

In this paper, we consider an approximation for diffusion of passive scalar in
strongly stratified turbulence from the viewpoint of the spectral or two-point closure
approximation. The approximation is based on the linearized approximation (or the
so-called rapid distortion (RDT) approximation) and Corrsin’s conjecture (1959) for
passive scalar diffusion in turbulence. The linearized approximation can be solved
analytically without difficulty, as done in § 2, and shows that each of the Fourier
modes representing the vertical component of the velocity field generally exhibits a
damped oscillation with a frequency depending on the direction of the wavevector.
Cambon & Godeferd (1994) and Hanazaki & Hunt (1996) have shown that the
approximation may provide good approximations for the time dependence of single-
time moments. Here we apply the approximation to Eulerian two-time correlations.
Corrsin’s conjecture yields a simple relation between the Eulerian and Lagrangian
two-time correlations. Although it has the defect of violating the invariance under
random Galilean transformations as discussed in Kaneda (1993), it is also known to
be in good agreement with kinematical simulations for homogeneous and isotropic
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turbulence under certain conditions (Kraichnan 1970, 1977; Lundgren & Pointin
1976). The conjecture is applicable to the passive scalar diffusion problem not only in
isotropic but also in anisotropic homogeneous stratified turbulence, as shown in § 3.

It has been argued that the suppression of vertical diffusion in strongly stratified
turbulence may be due to the reduction of the magnitude of the vertical velocity
component or strong horizontal turbulent mixing (see, e.g. Vincent et al. 1996). A
simple analysis based on the present approximation suggests another mechanism
which may be responsible for the suppression. According to the approximation, the
Eulerian as well as the Lagrangian vertical velocity autocorrelations decay due to
the mixing of the Fourier modes representing the vertical velocity component, and
the suppression of vertical diffusion can occur by the highly oscillatory nature of
these modes, even without reduction of the vertical velocity component, and without
enhancement of horizontal turbulent mixing, as shown in § 4. The approximation
explains well the strong suppression of vertical diffusion recently observed in the
direct numerical simulations (DNS) by Kimura & Herring (1996). The performance
of the approximation is assessed by comparisons with DNS in § 5, and it is shown to
be in good agreement with DNS for strongly stratified turbulence.

2. Basic equations and linearized approximations
We consider statistically homogeneous turbulent velocity and density fields in a

uniform mean density gradient that satisfy the Boussinesq approximation:

∂u

∂t
+ (u · ∇) u = −∇ p

ρ0

− ρ̃i3 + ν∇2u, (2.1)

∂ρ̃

∂t
+ (u · ∇) ρ̃ = κ∇2ρ̃+N2u3, (2.2)

∇ · u = 0, (2.3)

where u, p, ν and κ are, respectively, the velocity, pressure, kinematic viscosity and
molecular diffusivity, ui is the velocity component in the xi-direction with (x1, x2, x3)
being a right-handed Cartesian coordinate system, i3 the unit vector in the x3-direction
that is anti-parallel to the vertical gravitational acceleration g, ρ0 the reference density,
ρ̃ is proportional to the density deviation ρ′ from the mean density ρ(x3): ρ̃ = gρ′/ρ0,
and N the Brunt–Väisälä frequency given by N2 = −(g/ρ0)(dρ/dx3) with dρ/dx3

being the uniform mean density gradient.
Because of the incompressibility condition (2.3), the Fourier transform û(k) of the

velocity field defined by

u(x, t) =

∫
û(k, t) exp (ik · x) dk, (2.4)

may be decomposed as

û(k, t) = φ̂1(k, t)e
1 + φ̂2(k, t)e

2, (2.5)

where

e1 =
i3 × k
|i3 × k| , e2 =

k × e1

|k × e1|
(Craya 1958; Herring 1974; Métais & Herring 1989; Godeferd & Cambon 1994). For
fields satisfying periodic boundary conditions, the symbol

∫
dk is to be understood as



Suppression of vertical diffusion in stratified turbulence 313

a sum over k under appropriate normalizations. Within the linearized approximation
neglecting the convective terms, (2.1) and (2.2) reduce to(

∂

∂t
+ νk2

)
φ̂1 (k) = 0, (2.6)

(
∂

∂t
+ νk2

)
φ̂2 (k) = −ρ̂ (k) sin θ, (2.7)

(
∂

∂t
+ κk2

)
ρ̂ (k) = N2φ̂2 (k) sin θ, (2.8)

where θ is the angle between k and i3, ρ̂ is the Fourier transform of ρ̃ defined similarly

to (2.4), and we have used û3(k) = φ̂2(k) sin θ, which is verified from (2.5).
These linearized equations can be readily solved to yield

φ̂1 (k, t) = φ̂10 (k) e−νk
2t, (2.9)

φ̂2 (k, t) = Ae−(γ+−iα)t + Be−(γ++iα)t, (2.10)

ρ̂(k, t) = − 1

sin θ
[A(γ− + iα)e−(γ+−iα)t + B(γ− − iα)e−(γ++iα)t], (2.11)

where

A = − 1

2iα
[ρ̂0(k) sin θ + φ̂20(k)(γ− − iα)],

B =
1

2iα
[ρ̂0(k) sin θ + φ̂20(k)(γ− + iα)],

γ± = 1
2
(ν ± κ)k2, α2 = N2 sin2 θ − γ2−,

 (2.12)

and φ̂10, φ̂20 and ρ̂0 are the initial values of φ̂1, φ̂2 and ρ̂, respectively. Here the value
of α, i.e. the square root of (2.12), is to be taken appropriately. For a stably stratified
turbulence with real N > 0 and Pr ≡ ν/κ = 1, the solution can be considerably
simplified. In particular, if ρ̂0 = 0, we have

φ̂1 (k, t) = φ̂10 (k) e−νk
2t, (2.13)

φ̂2 (k, t) = φ̂20 (k) e−νk
2t cos(Nt sin θ), (2.14)

ρ̂ (k, t) = φ̂20 (k) e−νk
2tN sin(Nt sin θ). (2.15)

The solutions (2.9)–(2.15) are equivalent to those by Hanazaki & Hunt (1996) which
are expressed in terms of the primitive variables (û1, û2, û3) and ρ̂. They showed that
the linearized solutions may provide good approximations for single-time covariances,
especially for large N. Previously, the linearized approximation was used by Sanderson
et al. (1991) in the analysis of the eigenvalues corresponding the two-point single-time
correlation equations; however these authors recently confirmed with us that part of
the analysis is incorrect (J. C. Hill, private communication). The linearized equations
but with ν = κ = 0 were also analysed by Godeferd & Cambon (1994).

The solutions (2.9)–(2.15) may be used to obtain approximations not only for
single-time correlations, but also for multi-time correlations, in particular for the
Eulerian two-time correlation for any given initial conditions of u and ρ̃. Let R̂ij be
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the Fourier transform defined as

〈ui(x+ r, t)uj(x, t
′)〉 =

∫
R̂ij(k; t, t′) exp (ik · r) dk.

If the initial density field is uncorrelated with the velocity field so that
〈u(x, 0)ρ̃(x′, 0)〉 = 0 for any x and x′, then the linearized approximation (2.10) with

û3(k) = φ̂2(k) sin θ yields

R̂33(k, t, t
′) = e−γ+(t+t′)

{
R̂33(k, 0)

[
γ2−
α2

sin αt sin αt′ − γ−
α

sin α(t+ t′) + cos αt cos αt′
]

+
R̂ρρ(k, 0)

α2
sin4 θ sin αt sin αt′

}
, (2.16)

where R̂ρρ(k, 0) ≡ R̂ρρ(k; 0, 0) and R̂ρρ(k; t, t′) is the Fourier transform of 〈ρ̃(x +
r, t)ρ̃(x, t′)〉 with respect to r. For Pr = 1 and t′ = 0, this gives

R̂33 (k; t, 0) = e−νk
2tR̂33 (k, 0) cos (Nt sin θ) . (2.17)

It may be worthwhile to note here some limitations of the linearized aproximation
(RDT). First, since the nonlinear terms are neglected, the excitation of modes due to
nonlinear coupling is not represented in the RDT. This implies that the assumed initial
characteristic length scale remains unchanged, and developing of a wider range of
scales is not represented in the RDT. Second, the directional redistribution of energy
due to the nonlinearity is also neglected, as is the nonlinear redistribution of energy
between the velocity and density fields, and the RDT is therefore limited in its ability
to describe accurately anisotropy of the flow. Such directional redistribution of energy
was suggested to be responsible for the reduction of vertical velocity component in
Godeferd & Cambon (1994). Although it is expected that when the Froude number
Fr ≡ u0k0/N (u0 and k0 are respectively the characteristic velocity and wavenumber
of energy-containing eddies) is small enough or N is large enough, the effect of the
nonlinearity is generally small for small t, it is difficult to get an a priori estimate
of the effect for large t. We will therefore assess the performance of the RDT by
comparison with DNS in § 5.

Since the nonlinear terms are neglected in the RDT, and the effects of viscous and
diffusive terms are generally smaller than those of the nonlinearity except for very
large or small wavenumber k, it is difficult to analytically justify the inclusion of the
dissipative terms in the analysis. However, the analysis including them is not difficult,
and it gives the asymptotic solution for the weak nonlinear limit including all the
terms which may be dominant in the limit. The solution may be of theoretical interest
as representing a reference state, and it may be also hoped that including them may
yield a better approximation than discarding. We therefore keep the non-zero viscous
and diffusive terms here.

3. Approximations for turbulent diffusivity and Lagrangian velocity
correlation

As is well known, the problem of turbulent diffusivity is closely related to the
Lagrangian velocity correlation. The displacement ∆x in the time interval from t′ to
t of a particle may be expressed as

∆x(t′, t) ≡ x(t′)− x(t) =

∫ t

t′
v(s)ds,
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so that

∆ij(t
′, t) ≡ 〈∆xi(t′, t)∆xj(t′, t)〉 =

∫ t

t′
ds

∫ t

t′
ds′〈vi(s)vj(s′)〉, (3.1)

where x(s) and v(s) are, respectively, the Lagrangian position and velocity at time s of
the particle. Thus the covariance of the displacement can be known if the Lagrangian
velocity correlation is known.

There have been extensive theoretical and experimental studies on the Lagrangian
velocity correlations. Among them are studies on Lagrangian two-point two-time
closure approximations (e.g. Kraichnan 1965; Kaneda 1981), which enable us to derive
an approximate set of closure equations for Lagrangian two-time correlations from
given dynamics governing the fluid motion such as (2.1)–(2.3). However, it requires
a considerable amount of numerical computation to solve the set of equations for
anisotropic turbulence. In this paper, we try a simpler kinematical approximation
which is based on the conjecture by Corrsin (1959).

The approximation is obtained by noting the following relation between the La-
grangian velocity v and the Eulerian velocity u:

v(s) = u(x(s), s) =

∫
dru(r, s)δ(r − x(s)),

which implies

〈vi(s)vj(s′)〉 =

∫
dr〈ui(x(s), s)uj(r, s

′)δ(r − x(s′))〉. (3.2)

In the approximation of Corrsin, it is assumed that for large |s − s′| the statistical
dependence of the distribution of the position x(s′) in (3.2) on those of u(x(s), s) and
u(r, s′) is weak, and (3.2) may therefore be approximated as

〈vi(s)vj(s′)〉 =

∫
dr〈ui(x(s), s)uj(r, s

′)〉〈δ(r − x(s′))〉.
In the wavevector space, this is equivalent for homogeneous turbulence to

〈vi(s)vj(s′)〉 =

∫
dkR̂ij(k, s, s

′)〈exp
[−ik · [x(s′)− x(s)]

]〉. (3.3)

This approximation has been shown to be in good agreement with kinematic simu-
lations for cases without helicity, not only for large |s − s′|, (Kraichnan 1970, 1977;
Lundgren & Pointin 1976).

Equation (3.3) may be further simplified by assuming that in the evaluation of〈
exp

[−ik · [x(s′)− x(s)]
]〉

=

〈
exp[−ik ·

∫ s′

s

v(t)dt]

〉
,

the random process v(t) may be approximated as joint normal. We then have

〈vi(s)vj(s′)〉 =

∫
dkR̂ij(k, s, s

′) exp[− 1
2
km∆mn(s

′, s)kn] (3.4)

(Saffman 1962; Taylor & McNamara 1971; Lundgren & Pointin 1976). By assuming
(3.4) without restricting for large |s − s′| and using (3.1), we can obtain closed
approximations for the Lagrangian correlation 〈vi(s)vj(s′)〉 and the displacement tensor
∆ij .

In the literature, it is often assumed that the turbulence is statistically quasi-
stationary in the sense that the dependence on the time t of the covariances
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〈vi(t + τ)vj(t)〉 as well as ∆ij(t + τ, t) is negligible. Equations (3.1) and (3.4) then
yield

d2∆ij (τ, 0)

dτ2
= 2

∫
dkR̂ij (k, τ; 0) exp[− 1

2
km∆mn (τ, 0) kn], (3.5)

where we have assumed 〈vi(τ)vj(0)〉 = 〈vi(0)vj(τ)〉.

4. Suppression of diffusivity and phase mixing
4.1. Eulerian two-time correlation and phase mixing

In order to get some idea of the two-time correlation functions discussed in the
previous sections, it is illustrative to consider first the one-point Eulerian correlation
function

R33(t, 0) ≡ 〈u3(x, t)u3(x, 0)〉 =

∫
dkR̂33(k, t, 0), (4.1)

for Pr = 1. Substituting (2.17) into (4.1) gives

R33(t, 0) =

∫
dke−νk

2tR̂33 (k, 0) cos (Nt sin θ), (4.2)

where the integration over the wavevector space may be simplified if the turbulence is
not only homogeneous but also symmetric about the x3-axis and reflection invariant,
for which we may write without loss of generality

R̂ij (k, 0) = Pij(k)F + Pi3(k)Pj3(k)G, (4.3)

where F and G are appropriate scalar functions depending only on k and θ, and Pij
is the projection operator defined by Pij(k) = δij − kikj/k2.

For example, consider the following two kinds of initial velocity spectrum tensors:
one is the well known isotropic spectrum tensor given by

F = 1
3
M (k) , G = 0, (4.4)

and the other is the axisymmetric spectrum tensor given by

F(k) = 1
2
M (k) , G(k) = − 1

2
M (k) , (4.5)

where M is a scalar function depending only on k. The latter spectrum may be realized
by a field generated by random impulsive forces perpendicular to the symmetry
axis (x3-axis) with the correlation spectral tensor proportional to (δij − δi3δj3)M(k),
(Saffman 1967; Chasnov 1995). Both (4.4) and (4.5) give the initial energy spectrum

E(k, 0) =
4πk2

3
M(k), (4.6)

where

E(k, t) ≡ 1

2

∫
dΩR̂ii(k, t),

and
∫

dΩ is the integral over the spherical surface of given wavenumber. Then (4.2)
reduces to

R33(t, 0) =
1

2

∫ ∞
0

dke−νk
2tE(k, 0)

∫ π

0

dθ sin3 θ cos (Nt sin θ) , (4.7)
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and

R33(t, 0) =
3

4

∫ ∞
0

dke−νk
2tE(k, 0)

∫ π

0

dθ(sin3 θ − sin5 θ) cos (Nt sin θ) , (4.8)

for (4.4) and (4.5), respectively.
The integrals over k are of the same form in (4.7) and (4.8). The form is familiar in

the study of the final period of decaying isotropic turbulence, and it is shown under
fairy weak conditions that if

E(k, 0) ∼ kn,
near k = 0, then the integral decays for large t as∫ ∞

0

dke−νk
2tE(k, 0) ∼ t−(n+1)/2,

where the symbol ‘∼’ denotes the equality when ignoring factors independent of t.
In contrast to the integrals over k, the integrals over θ are different in (4.7) and

(4.8), reflecting the difference of the initial energy spectrum. Not only for the spectra
(4.4) and (4.5) but also for a wider class of axisymmetric spectra, the integral over θ
in (4.2) may be generally put into the form

I(t) =

∫ 1

0

f(x) cos (Nxt) dx, (4.9)

where x = sin θ, and

I(t)→ 0 (4.10)

∞ t → ∞. The form of f is determined by the velocity spectrum. For example,
f(x) ∝ x3/(1− x2)1/2 and f(x) ∝ (x3 − x5)/(1− x2)1/2, for the spectra (4.4) and (4.5),
respectively.

It is to be noted that the correlation R33(t, 0) decays even if ν = 0. In the inviscid
case with ν = κ = 0, each Fourier mode does not decay but only oscillates with its
own frequency determined by the direction θ of the wavevector. However, the phases
of the modes may differ from each other unless t = 0, and the mixing of modes
having different phases may result in the damping of the correlation as implied in
(4.9), where the term cos(Nxt) does not decay but only oscillates with frequency
determined by Nx = N sin θ, but the integral I(t) over x damps as shown in (4.10).

This damping is in a sense similar to the one observed in the average

〈cos (bt)〉 ≡
∫

cos (bt)P (b)db (4.11)

of random oscillators, where b is a time-independent random real number with zero
mean and P (b) is the probability distribution of b. For given b, cos(bt) does not
decay but only oscillates. However, the average tends to zero as t → ∞ under fairly
weak conditions of P (b) as shown by the Riemann–Lebesuge theorem. This kind of
damping is well known in statistical physics, and Orszag (1977) called it stochastic
relaxation in the context of studying turbulence.

In (4.11), the weighting function P represents the probability distribution of the
random frequency b, while in (4.9), x = sin θ is not random and the weighting function
f represents the energy density over x. In order to distinguish this difference between
the meanings of the weighting functions f and P , we will refer to the damping of
(4.9) (or (4.7) and (4.8)) as that due to ‘phase mixing’.

The damping due to the phase mixing occurs not only for R33(t, t
′) with t′ = 0 as
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discussed above but also for general t′. When Pr 6= 1, we must take into account in
using (2.16) that (i) α2 = N2 sin2 θ − γ2− (see (2.12)) can be negative so that α can be
complex, and (ii) γ− 6= 0. However, if γ2−/N2 = [(ν−κ)k2]2/(4N2)� 1, then the range
of θ in which N2 sin2 θ − γ2− is negative is very small and also we may approximate α
as α ≈ N sin θ and γ−/α is very small except a certain small range of θ. It is therefore
expected that if

(ν − κ)2k4
p

4N2
� 1,

where kp is the characteristic wavenumber of the energy-containing range, then we
may in general ignore (i) and (ii) in (2.16), and (4.2) may be still available for getting
a rough estimate of the correlation R33(t, 0) for Pr 6= 1.

4.2. Suppression of vertical diffusion

The expression (3.4) is a little more complicated than (4.2). However if we introduce a
bold assumption that the exponential factor in (3.4) may be discarded or approximated
as

exp[− 1
2
km∆mn(s

′, s)kn] ≈ 1, (4.12)

then we have

〈vi(s)vj(s′)〉 ≈
∫

dkR̂ij(k, s, s
′) = Rij(s, s

′). (4.13)

This implies that the Lagrangian two-time velocity autocorrelation behaves similarly
to the Eulerian two-time correlation within this approximation. It is therefore expected
that the damping due to the phase mixing discussed above may also occur in the
Lagrangian correlation.

The approximation (4.12) cannot be valid for large k unless the displacement tensor
∆mn(s

′, s) is very small. It may however be tolerable or work well if the integral over
k in (3.4) is dominated by the wavevector range with sufficiently small k.

An approximation for the displacement tensor ∆ij(t, 0) may be obtained by substi-
tuting (3.4) into (3.1). In order to get a rough estimate of ∆33(t, 0) for large t, let us
consider the case of Pr = 1, and neglect the viscosity and use the bold assumption
(4.13). Then substituting (4.13) with (2.16) and α = N sin θ into (3.1) yields

∆33(t, 0) =

∫
dk

∫ t

0

ds

∫ t

0

ds′
[
R̂33(k, 0) cos αs cos αs′ +

R̂ρρ(k, 0)

α2
sin4 θ sin αs sin αs′

]

=
1

2N2

∫
dk

[
R̂33 (k, 0)

sin2 θ
+

3R̂ρρ(k, 0)

N2

]

+
1

2N2

∫
dk

{
− R̂33 (k, 0)

sin2 θ
cos (2Nt sin θ)

+
R̂ρρ(k, 0)

N2
[−4 cos (Nt sin θ) + cos (2Nt sin θ)]

}
(4.14)

= [const] + [damped oscillation],

where the term [const] represents the first integral of (4.14) independent of time, while
the term [damped oscillation] represents the second integral which in general exhibits
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a sum of damped oscillations that decay due to the phase mixing. The constant
depends not only on the total initial energy, but also on the form of the velocity
spectrum. For example,

[const] =


1

2N2
(E0 + 3D0) for the spectrum (4.4)

1

2N2
( 1

2
E0 + 3D0) for the spectrum (4.5)

(4.15)

where E0 and D0 are respectively the initial values of the kinetic energy and the
potential energy defined by

E0 =

∫ ∞
0

E(k, 0)dk, D0 =

∫
dk
Rρρ(k, 0)

N2
.

The estimate (4.14) with (4.15) shows that the mean-square displacement ∆33(t, 0)
approaches an asymptotic value proportional to 1/N2 as t → ∞. Such a propor-
tionality is in agreement with previous theoretical estimates (Csanady 1964; Pearson,
Puttock & Hunt 1983) which argue for ∆33(t, 0) ∼ c/N2 for large t on the basis of
Langevin models, where c is a time-independent constant. These Langevin models
also include a kind of mixing of oscillations of different frequencies. For example,
according to Pearson et al. (1983) their model gives

∆33(t, 0) =

∫ ∞
−∞
A(ω)(1− cos ωtN)Φ(ω)dω, (4.16)

where A(ω) is a function of frequency ω determined by assumed constants in their
model, and Φ(ω) is determined by the pressure frequency spectrum, under appropriate
normalization (see their (2.20) for the detail). Thus (4.16) also gives an expression
for ∆33 as a sum (an integral) of oscillations with different frequencies. However,
a difference between (4.14) and (4.16) is to be noted: the integration in (4.16) is
over the frequency ω, and depends on the assumed frequency distribution of the
pressure, whereas the integration in (4.14) is over the wavevector k, representing the
mixing of modes oscillating with their own frequencies depending on their wavevector
directions, and shows the dependence on the wavevector spectra of the fluctuating
velocity and density fields.

The decrease of ∆33(t, 0) with 1/N2 is also in agreement with the estimates (Cox,
Nagata & Osborn 1969; Lilly et al. 1974; Weinstock 1978) which argue for ∆33(t, 0) ∼
c′t/N2, where c′ is a time-independent constant. However, the time dependence of
(4.14) with (4.15) is different from these estimates. The DNS by Kimura & Herring
(1996) shows that ∆33(t, 0) is bounded and levels off at ∼ 1/N2. Recently, Nicolleau &
Vassilicos (1999) have shown that within the linearized approximation with ν = κ = 0,
the vertical displacement is bounded in time. Their kinematical simulation also shows
that ∆33(t, 0) approaches a constant proportional to 1/N2 for large t.

5. Comparison with direct numerical simulations
5.1. Method of simulation and run conditions

We have simulated fields obeying (2.1)–(2.3) by using the spectral method with the
2
3
-rule for de-aliasing in a periodic box of length 2π in the three Cartesian directions

as described by Patterson & Orszag (1971). In the simulations presented below, the
particles are initially at regularly located three-dimensional grid points, and then
traced by solving dxi(t)/dt = v(xj , t), where the velocity v(xj , t) of each particle is
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computed by an interpolation method based on a spectral method. The time-marching
of the fields as well as the particle motion is accomplished by a fourth-order Runge–
Kutta method with a constant time increment ∆t.

The initial Fourier velocity components can be generated by (2.5). We consider
here two types of initial fields, say Type I (isotropic) and Type A (axisymmetric), in

which the initial amplitudes φ̂1 and φ̂2 in (2.5) are given by

φ̂1(k) =

[
M(k)

3

]1/2

exp (2iπχ1), φ̂2(k) =

[
M(k)

3

]1/2

exp (2iπχ2), for Type I,

and

φ̂1(k) =

[
M(k)

2

]1/2

exp (2iπχ1), φ̂2(k) =
k3

k

[
M(k)

2

]1/2

exp (2iπχ2), for Type A,

under the constraint of the reality condition u∗(k, 0) = u(−k, 0), where

M (k) =
4

π

(
2

π

)1/2

u2
0k
−5
p k

2 exp

[
−2

(
k

kp

)2
]
, (5.1)

u0 = 1.242, kp = 4.767, the symbol ∗ denotes the complex conjugate, and χ1 and χ2 are
uniformly distributed random numbers between 0 and 1, and statistically independent
of each other (Chasnov 1995). The initial energy spectrum R̂ij(k, 0) is then given by
(4.3) with (4.4) for Type I and with (4.5) for Type A, as may be verified by taking the
contractions e1

i e
1
j R̂ij and e2

i e
2
j R̂ij , and using Pij(k) = e1

i e
1
j + e2

i e
2
j . For both Types I and

A, 〈u · u〉 = 2
∫
E(k, 0)dk = u2

0.
The initial density fluctuation is set to zero except for the case shown in figure 4,

and we use the following parameter values: the Brunt–Väisälä frequency N is given
by N2 = 10, 100 or 1000, and ν = 0.005, κ = 0.005. These parameter values give the
Prandtl number Pr ≡ ν/κ = 1, the initial Reynolds number Re ≡ u0/(νkp) ' 52,
and the initial Froude number Fr ≡ u0kp/N ' 1.87, 0.59 or 0.19. The number of
tracer particles m and time increment ∆t in the time marching are set to be m = 512
and ∆t = 0.005. In order to check the effect of m and ∆t, we have also performed
simulations with doubling m or reducing ∆t by half for the case N2 = 1000 with
initial field of Type I. No significant change was observed for the changes.

The above values for kp, N
2, ν and κ were also used in Kimura & Herring (1996,

hereafter referred as KH) in their DNS. There are however some differences between
our runs and KH’s. First, the initial Reynolds number, and the numbers of mesh
points (643) and tracer particles (m = 512) are smaller, and the time of particle tracing
is somewhat shorter in the former. Second, the introduction of the stratification and
density fluctuations as well as the particle release are done at t = 0 in our runs,
whereas they are done after the enstrophy reaches its peak value in KH.

In the present study, we wish to know the possible effect of the spectrum Rij(k)
on the turbulent diffusivity. However, neither the velocity nor the density fluctuation
spectrum at the time when the fluctuations and stratification are introduced or
the particles are released is available from KH. We therefore decided to perform
simulations presented below, in which the information on the spectra is available, and
we can consider not only isotropic but also anisotropic initial conditions (KH treated
only isotropic initial condition). In spite of the differences noted above, the present
and KH’s DNS show at least qualitatively similar statistics regarding the vertical
turbulent diffusivity and Lagrangian velocity (cf. figures 4 and 7 in KH and figures 2
and 3 shown below); they exhibit strong suppression of vertical diffusion for large
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Figure 1. Normalized Eulerian correlation R′33(t, 0) vs. time t for (a) N2 = 1000, (b) N2 = 100 and
(c) N2 = 10; solid and dotted lines are respectively theoretical and DNS values. Values for the runs
with the initial field of Type I and Type A are labelled as Iso and Axi, respectively.

N2. The similarity suggests that the differences are unlikely to be significant for the
following discussion especially for large N2, and gives a justification for our using the
simulation results here.

5.2. Simulation results

Figures 1(a), 1(b) and 1(c) show the normalized Eulerian two-time correlation

R′33(t, 0) ≡ 〈u3(x, t)u3(x, 0)〉
〈u2

3(x, 0)〉 ,

for N2 = 1000, 100, and 10, respectively, from DNS and the linearized approximation
(4.2). The DNS values show that the correlation decays in an oscillatory manner
in time t, and the period of oscillation is shorter for larger N2. They also show
that the correlation decays faster in the runs with initial condition of Type A (or
simply runs of Type A) than in the runs of Type I, for large N2. Thus the decay
depends on the initial energy spectrum. These properties are well captured by the
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Figure 2. The same as figure 1, but for the normalized Lagrangian two-time correlation.

linearized approximation, which is seen to be in fairly good agreement with the DNS
especially for large N2. The same is also true for the normalized Lagrangian two-time
correlation

L′33(t, 0) ≡ 〈v3(x, t)v3(x, 0)〉
〈v2

3(x, 0)〉 ,

shown in figure 2. Here the theoretical values for the Lagrangian correlation are
obtained by solving the closed set of equations (3.1) and (3.4) for the Eulerian
spectrum given by (2.16).

In order to check the influence of the Prandtl number we have also simulated
fields and correlations under the same conditions as those for the runs of Type I,
but with κ = 0.025(Pr = 5) or κ = 0.001(Pr = 0.2). In all of the runs, the value
of [(ν − κ)k2

p]
2/(4N2) is very small, and the simulated values of the Eulerian and

Lagrangian correlations are not significantly different from those shown in figures 1
and 2, as would be expected from the discussion in the last paragraph of § 4.1, and
the figures are omitted here.

Figure 3 compares the mean-square particle displacements, ∆33(t, 0) ≡ 〈[x3(t) −
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Figure 3. Mean-square displacement ∆33(t, 0) vs. time t for the values of N2 labelled in the figure
and for (a) the runs of Type I, and (b) the runs of Type A; solid and dotted lines are respectively
theoretical and DNS values. The line labelled as (3.5) shows the values for N2 = 1000 based on
(3.5). The straight lines are asymptotic values from (4.15).

x3(0)]2〉 from DNS and the theoretical values obtained by (3.1) and (3.4) with (2.16)
or (2.17). As seen in the figure, the theoretical values are in good agreement with the
DNS, especially for large N2. For N2 = 1000, it is observed that the displacement
is strongly suppressed. The asymptotic value for large t is in fairly good agreement
with the bold estimate (4.15), in which the asymptotic value is proportional to 1/N2.
From the comparison between figures 3(a) and 3(b), the asymptotic values are seen
to be not the same. This as well as the estimate (4.14) suggests the value depends on
the spectrum. The DNS value for N2 = 1000 shows a slight decrease with time. Such
a decrease is also seen in the DNS by KH.

Figures 1, 2, and 3 suggest that the agreement between the theory and DNS is
better in figure 3, especially in figure 3(b), than in figures 1 and 2. This is not
surprising in view of the following consideration. The highly oscillatory nature of the
vertical velocity component for large N2, or that of the two-time correlation spectrum
R̂33(k, s, s

′) for large |N sin θ| is well captured by the RDT, although the difference

between the RDT and the DNS solutions for the velocity field or R̂33(k, s, s
′) as

an initial value problem may increase with time. Due to this oscillatory nature, the
contribution from the range of large times s and s′ to the integral for ∆33 in (3.1) may
be not so significant, and thereby ∆33(t, 0) at large t may be not very sensitive to the
error from the theory at large s and s′.
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Figure 4. The same as figure 3(a), but for the case of non-zero initial density fluctuation.

In order to check the validity of the simplifying assumption of quasi-stationarity
implied by (3.5), the values from the use of (3.5) instead of (3.4) are also shown for
N2 = 1000 in the figure. It is seen that the agreement is poor even for N2 = 1000,
and the assumption may not be justifiable.

Figure 4 shows the comparison for cases similar to the runs of Type I but with
non-zero initial density fluctuation spectrum

R̂ρρ(k, 0) =
CE(k, 0)

4πk2
,

where E(k, 0) is given by (4.6) and (5.1), and the constant C is so chosen that
D0 = E0/4, i.e. C = 1

4
N2. The figure again shows a good agreement between the

theoretical values and DNS for large N2. The comparison between the DNS values
in figures 3(a) and 4 shows that the asymptotic value of ∆33(t, 0) for large t may
depend not only on the initial kinetic energy E0 but also on the potential energy D0,
in agreement with the estimate (4.15).

These figures suggest that the agreement with the asymptotic estimate (4.15) for
large t and DNS are generally good within the observed time interval for large
N2. There remains the possibility that due to neglected nonlinearity, the asymptotic
behaviour for much longer time may be different. To check such a possibility, time
integration for much longer time would be necessary.

One might think that the suppression might be due to strong reduction of the
magnitude of the vertical velocity component. However, as shown in figure 5 for the
runs of Type I, the normalized Eulerian single-point moment

R′33(t) ≡ 〈u3(x, t)u3(x, t)〉
〈u3(x, 0)u3(x, 0)〉

remains at order unity in the observed time range, and the observed reduction/change
of the vertical velocity magnitude is clearly insufficient to explain the strong suppres-
sion of the vertical displacement for large N2, as seen in figure 3.

One might also think that the suppression might be due to strong anisotropy of
the velocity field, or strong horizontal mixing as discussed by Vincent et al. (1996).
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Figure 5. Normalized mean-square vertical velocity R′33(t) vs. time for N2 = 10, 100 and 1000 and
the runs of Type I.
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Figure 6. The anisotropy ratio ξ defined by (5.2) vs. time for the runs of Type I.

The anisotropy may be measured by

ξ (t) =

[
2
〈
u2

3

〉〈
u2

1

〉
+
〈
u2

2

〉]1/2

, (5.2)

and is shown in figure 6 for the runs of Type I. It shows that the ratio ξ remains at
order unity in the observed time range, and suggests that the anisotropy or horizontal
mixing is not essential for the suppression observed in figure 3.

The above results do not imply that in general either the reduction of vertical
velocity or a strong flow anisotropy plays any significant role. What they suggest is
that, at least in the case studied here, these effects, as observed in figures 5 and 6, are
insufficient to explain the strong suppression as observed in figure 3 for large N2.
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6. Results and discussion
The comparisons with DNS in the previous section show that the approximation

based on (2.16) (or (2.17)) and (3.4) agrees well with the DNS, at least for large N2.
The approximation shows that the Eulerian as well as the Lagrangian vertical

velocity autocorrelations decay due to the mixing of the (damped) oscillating Fourier
modes representing the vertical component of the velocity field whose frequencies
depend on the wavevector directions, and the suppression of the displacement in
the vertical direction depends on how the modes are mixed, i.e. it depends on the
velocity spectrum. The time dependence of Lagrangian as well as the Eulerian two-
time velocity correlation, and the displacement tensor ∆ij differ for different velocity
spectrum. It therefore seems difficult to explain the differences by using only one-
point quantities such as the total energy. The approximation suggests the necessity
of taking into account the spectrum or two-point information, and also suggests
that once the spectrum information is taken into account, then we can obtain a
reasonable approximation without introducing any ad hoc adjusting parameter, at
least for large N2.

It is often assumed in the literature that the mean square of particle displacement
is proportional to the time difference such as

∆ij(t, 0) ∝ Dijt,

for large t, where Dij is a constant called the turbulent (or eddy) diffusion constant.
This approximation is based on the assumption that the Lagrangian two-time cor-
relation is stationary. However, the Eulerian correlation given by (2.16) and used in
(3.4) is clearly non-stationary. It is therefore difficult to justify this assumption of
stationarity for large N2, and the non-stationarity results in poor agreement between
DNS and the approximation based on (3.5), at least in the observed time range shown
in figure 3.

For moderate or small N2, it is expected that we need take into account the
nonlinearity which is neglected in the linearized approximation. It would be interesting
to try approximations taking into account both the nonlinearity and the spectrum
information, and this is left for future studies.
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